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Review

Background For most salid tumours, surgery remains fue most effective primary treatmento Despite
apparently curative resection, significant numbers of patients develop secondary disease due to
growth of undetected micrometastaseso The ability of a tumour to metastasize is related to the
degree of angiogenesis it induces. In addition, micrometastases reIr on new vessel formation to
provide the nutrients necessary for growtho A better understanding of how tumours acquire their
blood supply mar lead to more effective adjuvant therapies and improve survival following surgery.

Methods A systematic review of the literature on angiogenesis between 1971 and 1997 was performed
using the Medline dafabase to ascertain current thinking on angiogenesis and its relevance in
oncological surgeryo

Results Angiogenesis is a physiological process subject to autocrine and paracrine regulation which
has the potential to become abnormal and playa part in a number of pathological sta~e~j including
cancer. Increased angiogenic stimuli in the perioperative period, associated with conconiitant
reduction in tumour-derived antiangiogenic factors following resection of a primary tumour, result
in a permissive environment which allows micrometastases to growo

Conclusion Recognition of the Tole of angiogenesis in metastatic tumour growth represents a
significant development in OUT understanding of tumour biologyo The development of
antiangiogenic agents offers new promise in the treatment of malignancyo Such agents mar prevent
or control the development and growth of primary and metastatic tumourso

prognostic value in breast cancer4,15. These confticting
findings mar be attributable, in part, to the heterogeneity
of microvessel density within individual tumours, as well
as to interlaboratory and interobserver variability in
microvessel counting12.

OUT understanding of mechanisms regulating
angiogenesis in metastatic disease is increasing16.
Acquisition of a blood supply by micrometastases at the
site of implantation is crucial to tumour growth.
Neovascularization is promoted by a number of
proangiogenic factors of tumour and stromal origino The
clinical impression that resection of a primary tumour
heralds a phase of increased metastatic growth is of
particular interest, but until recently no explanation of
this phenomenon existed. Recent studies have shown that
the intact primary tumour can regulate growth of
associated metastases, either directly or indirectly,
through the production of certain antiangiogenic factors,
notably angiostatiw7. Surgical excision of a primary
tumour removes the source of the inhibitory angiostatin
and other factors, allowing angiogenesis and subsequent
growth of previously dormant micrometastases18. Tumour
recurrence many years after apparently successful
treatment of a primary lesion is partir the result of
increased angiogenesis19,ZO. Long-term suppression of
angiogenesis mar become a therapeutic option for
induction of long-term remission by maintaining
micrometastases in a state of dormancy, a dynamic
equilibrium during which there is no net tumour growthzo.
The proliferating capillary endothelial cell offers a unique
target for antiangiogenic therapy21 as antiangiogenic
strategies mar reduce both the recurrence rate and the
metastatic potential of salid tumours22.

Angiogenesis is a process through which new blood
vessels develop from pre-existing vessels such as
capillaries and postcapillary venules1,2. It is tightly
regulated by a large number of proangiogenic and
antiangiogenic factors. In physiological circumstances,
angiogenesis is fuUy controUed by an equilibrium between
these factors such that little blood vessel growth occurs in
the healthy adulto Accelerated angiogenesis is a normal
physiological response to wound healing, inflammation,
menstruation and embryonic development, but a
pathological feature of conditions such as diabetic
retinopathy, rheumatoid arthritis and salid tumours.

The pivotal Tole of angiogenesis in primary tumour
growth and metastasis has been recognized for many
years, although the mechanisms which control it are
incompletely understood3. Growth of a tumour beyond
2-3 mm3 requires development of a microvessel network
to facilitate delivery of nutrients and oxygen, and removal
of catabolites. Density of microvasculature has been used
as an indicator of biological aggressiveness and metastatic
potential in many primary tumours4, as neovascularization
facilit~tes metastasisl,S by providing access to the
circulation6, 7. The degree of angiogenesis in primary
breast8, prostate4 and colorectal9 carcinoma correlates
with lymph nade metastasis. The predictive value of
microvessel density in the primary tumour remains
controversial. Microvessel density has been shown to be
an independent prognostic indicator in non-smaU ceO lung
cancer1o, certain instances of node-negative breast
cancer11,12 and several other carcinomas13. However,
conflicting reports exist, particularly in relation to its
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1045SIGNIFICANCE OF ANGIOGENESIS IN CANCER THERAPY

Factors influencing angiogenesis are derived both from
tumour cells and infiltrating cells, such as macrophages
and fibroblasts7. Through their secretory products,
activated macrophages can influence each phase of the
angiogenic process43-45. The process of macrophage
activation is mediated in part by hypoxia46. The large
number of macrophages present in a variety of
angiogenesis-associated pathological states is indicative of
their influence. It is known, for example, that numerous
macrophages are present in the first phase of tumour
growth. Macrophage density is directly proportional to
Tale of tumour growth in breast carcinoma47. Further-
more, tumour-associated macrophages cause marked aug-
mentation of tumour neovascularization40 and corre late
directly with prognosis in this disease48. Other immune
cells are also significant, as neutrophilia is associated with
a poorer prognosis in breast cancer49.

Proangiogenic factors (Table 1)
Vascular endothelial growth factor

VEGF is the most potent directly acting angiogenic
protein known5o. It is a diffusible endothelial cell-specific

Table 1 Proangiogenic substance:

Substance Reference

Stages oí neovascularization

Newly forrned capillaries are composed of two cell types,
endothelial cells and pericytes. These two cells have the
capacity to produce entire capillary networks. Following
the transduction of signals which promote differentiation
in vivo, angiogenesis progresses in tour stages: activation
of endothelial cells, proliferation, miwation and lumen
forrnation23.

Cytokine release is provoked by factors endogenous and
exogenous to tumour cells, including local environmental
factors such as hypoxia. Quiescent endothelial cells are
activated by the release of cytokines from host and
tumour cells (stage 1). Committed cells proliferate (stage
2), then migrate along a fibrin skeleton towards the source
of the angiogenic stimulus to forrn cords of aligned cells
(stage 3). Finally, the vascular sprout forrns a lumen and
the cells exit fue cell cycle to a resting phase.
Development of a patent lumen (stage 4) occurs through
coalescence of intracellular vacuoles and is facilitated by
cell-to-cell adhesive contactl.

Degradation of the extracellular matrix is an essential
component of new vessel invasion. This is facilitated
by alteration of the proteolytic balance. Proteolytic
degradation of the extracellular matrix and fibrinolysis are
two functions of pericytes24, although pericytes are also
thought to contribute by production of growth factors and
growth inhibitors. Cell adhesion receptors promote
vascular cell migration through interaction with adhesion
proteins of the extracellular matrix, such as collagen and
fibronectin. The extracellular matrix also serves as a
reservoir for wowth factors, particularly acidic fibroblast
growth factor and basic fibroblast growth factor
(bFGF)25-27.

The capillary sprouts in tumours are 'leaky' as
proliferating capillaries have incomplete basement
membranes. In addition, vascular endothelial growth
factor (VEGF; previously known as vascular permeability
factor) increases perrneability through the development of
a series of interconnected cytoplasmic vesicles and
vacuoles (known as vesical-vacuolar organelles) that
maintain contact with both the luminal and abluminal
surface28.29. In normal tissues this may playa regulator;¡
Tole in controlling baseline microvascular perrneability3 ,
and in tumour microvasculature this feature has been
linked to malignant exudates and ascites31.32.

Regulation oí angiogenesis
The degree of angiogenesis in a tumour is the result of
complex interactions between tumour celIs, capilIary
endothelial celIs, pericytes and recruited immune celIs
with products of these celIs acting in both an autocrine
and paracrine fashion33. It is normalIy subject to tight
physiological control through a balance of proangiogenic
and antiangiogenic factors. These factors alIow a phase of
rapid proliferation to facilitate wound healing but
maintain quiescence in the matuTe microvasculature5.
Increased production of positive angiogenic factors is
'necessary but not sufficient'34 for induction of the
angiogenic Rhenotype; negative regulators must also be
decreasedI8.5.36. Imbalance between angiogenic promoters
and inhibitors produces the intense angiogenesis which is
characteristic of many ¡athological processes, including
diabetic retinopathy37-3, rheumatoid arthritis40, endo-
metriosis41 and malignant tumours29.42,
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bFGF receptors results in suppression of salid tumour
growth83.

Acidic fibroblast growth factor

This is a heparin binding site-specific endothelial cell
mitogen84,85 which promotes angiogenesis and wound
healing86,87, It is expressed constitutively in normal as well
as in tumour cells, but appears to be inhibited by an
angiogenesis suppressor gene which is downregulated
during tumorigenesis34, Like bFGF, it is found in many
normal cells but exported only in tumour cells,

Platelet-derived endothelial cell growth factor

This proangiogenic ~okine is found in platelets88 and
released during the blood clotting cascade, as well as
being produced by vascular smooth muscle cells89. It is an
endothelial cell mitogen but is not a classical growth
factor, because direct contact with a cell-surface receptor
is not required for its mitogenic capability90. It promotes
endothelial cell migration91 and may facilitate endothelial
differentiation92. Platelet-derived endothelial cell growth
factor (PD-ECGF) expression is known to be modulated
by the tumour microenvironment93. It is homologous to
thymidine phosphorylase94, an enzyme which catalyses the
reversible breakdown of thymidine to thymine and
deoxyribose-l-phosphate. This enzymatic activity may
contribute to its angiogenic activity, as products of
deoxyribose-l-phosphate are known to be angiogenic,
although the mechanism through which PD-ECGF exerts
is angiogenic effect is not yet fully understood9S,%.

Transforming growth factor p
Transforming growth factor (TGF) p, which is producéd
by macrophages and activated platelets, exists in three
human isoforms, pl, p2 and p3. AlI act as chemotactic
agents for macrophages and are indirectly angiogenic in
ViVO97-101, although TGF pl appears most potent in this
regardlOO. TGF pl facilitates wound healing through
accelerated collagen deposition and maturationI°l. It
induces matrix production and alters integrin production
to facilitate neovascularization. It acts in a dose-
dependent manner, with low concentrations exhibiting
stimulatory and high concentrations inhibitory effects1O2.
Its absence results in poor vascular integrity and reduced
remodellinglO3. TGF p3 appears to have a greater Tole in
matrix remodelling, with a resultant decrease in scar
formationIoo.

mitogen and angiogenic factor, which algo increases
vascular permeability51,52. It binds to two endothelial cell
tyrosine kinase receptors, the fms-like tyrosine kinase (ftt)
and the kinase domain receptor (KDR)53.54.

Tumour-derived VEGF plays an important role in the
paracrine stimulation of angiogenesis but it algo appears
to have an autocrine stimulatory effect on tumour cells55,
particularly in response to hypoxia56. Hypoxia stimulates
angiogenesis in a number of sites, including endothelial
cells, retinal pericytes57, myocardium58 and salid tumours59.
VEGF activity is potentiated by oxygen deprivation60-62,
mediated in part by adenosine57,63 through upregulation of
the VEGF endothelial cell receptor KDR64. Wild-type
p53, a tumour suppressor gene, inhibits proliferation of
both normal and transformed cells65,66, and algo regulates
VEGF production. Mutations in ibis gene abolish such
control. There appear to be two regulatory VEGF
pathways: an oncogenic one (v-src) that enhances VEGF
production and a tumour suppressor (P53) signal that
suppresses VEGF50. Mutations of the ras oncogene cause
VEGF upregulation in a colon cancer model with
resulting increased angiogenesis67. H-ras oncogene
mutation algO activates angiogenesis through upregulation
of VEGF and matrix metalloproteinase (MMP)
bioactivity, while downregulating activity of tissue
inhibitors of MMP68.

Tumour cell lines which express minimal constitutive
and hypoxia-inducible VEGF (e.g. human melanoma SK-
MEL-2 cells) produce small, poorly vascularized tumours.
Overexpression of VEGF results in dramatically increased
angiogenesis and subsequent tumour expansion69.
Interruption of the VEGF receptor paracrine pathway in
glioma tumours inhibits angiogenesis, leading to reduced
numbers of new vessels, a higher degree of necrosis and a
reduction in size of glioma tumours7o. Expression of
VEGF and its receptor KDR is higher in metastatic than
in non-metastatic colónic neoplasms, and correlates
directly with the extent of neovascularization and degree
of proliferation9. There is a direct correlation between
serum VEGF concentration and breast cancer stage71.

Soluble recombinant ftt receptor binds to t;ree VEGF
and inhibits its mitogenic affinity for endothelial cells 72.
Anti- VEGF antibodies have been used as a new
therapeutic modality for the prevention of retinal
ischaemia-induced neovascularization of the iris,
confirming that the in vitro effects of VEGF inhibition are
reproducible in vivo 73.

Basic fibroblast growth factor

This is a 16-kDa protein which is one of a family of
fibroblast growth factors74. Capillary endothelial cells
themselves produce and release bFGF which acts in an
autocrine fashion independently, and synergistically with
VEGF75, as an endothelial cell mitogen 76. It binds
intensely to the extracellular matrix, but is normalIy
confined to its cell of origin as it lacks the signal peptide
thought to be necessary for secretion5°. During the
malignant evolution of fibrosarcoma, neovascularization is
associated with a switch to the ability to export bFGF
from cells77. It also stimulates endothelial and vascular
smooth muscle cell motility78,79 especially after arterial
traumaso. Heparin released by recruited mast cells
amplifies its effect5. Its systemic administration results in
an increased Tale of tumour growth and increased
vascularirysl. Binding by bFGF is inhibited by suramin, an
antiparasitic agent82. lt has been shown that blockade of

Epithelial growth factor
Epidermal growth factor (EGF) is a mitogenic growth
factor. EGF receptors belong to a group of proto-
oncogenes, including c-erbB2, which are overexpressed in
a number of human tumours104. EGF is secreted by
tumour-associated macrophages in patients with carcin-
oma of the breasfo5.

Integrins
Blood vessels involved in angiogenesis express adhesion
proteins, known as integrins, including von Willebrand
factor, fibronectin, fibrin and vascular integrin !XVI P3 and
!XvIPs- They facilitate cell-cell and cell-matrix
interactionslO6, thereby playing a crucial Tole in endothelial
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cell chemotaxis. Adhesion proteins may be selectively
inhibited by monoclonal antibodies with the resulting
decrease in angiogenesis inducing apoptosis of endothelial
cells34. Vascular integrin (XV1P3 is selectively expressed on
growing vessels, where it suppresses p53 activity while
increasing the bcl2:bax ratio with a net proangiogenic and
antiapoptotic effecpO7. Its inhibition by monoclonal
antibodies in a melanoma model results in reduced
angiogenesis, suggesting that the new tumour vasculature
grows in a self-perpetuating mannerOS,

Table 2 Antiangiogenic substances

Substance Reference Year

Tumour necrosis factor (X

Tumour necrosis factor (TNF) (X is a macrophage-derived
angiogenic factor which is considered to be the principal
mediator of tumour cell cytotoxicity and cytostasisl09. It
has a broad spectrum of biological activities including
both stimulatory and inhibitory effects on! target cells
which are dose related40,llO. It induces granulocyte-
macrophage colony sti~ulating factor production, has
procoagulant activity and increases the adherence of
human endothelial ce11s. Its proangiogenic activity was
initia11y postulated to be induced through an inflammatory
mechanism secondary to its cytotoxic effectslll. It is now
believed that TNF-(X is a potent mediator of angiogenesis
at low concentrations, independent of inflammationllO.

Endotoxin

Endotoxin (lipopolysaccharide; LPS) is a ubiquitous
molecule derived from the cell wall of most Gram-
negative and some Gram-positive bacteria as well as
existing in a free form in the environment. It is a
proangiogenic molecule because of its ability to elicit
production of awide spectrum of host-effector molecules,
such as VEGF, bFGF, TGF-p, TNF, interleukin (IL) 1
and IL-6, by macrophages and other cell populationsll2-114.
Recent work from the authors' laboratory shows that LPS
introduced at the time of open surgery in a tumour-
bearing murine model increases serum VEGF
concentrationl15.

Thrombospondin Canfield and Schor96 1995
Angiostatin O'Reilly el aV2! 1994
Endostatin O'Reilly el al.123 1997
Suramin Takano el aV7U 1994
Interferon IX and P Stout el aV68 1993
Interferon y Kobayashi el aV99 1995
Interferon JL inducible protein 10 Angiolillo el al?OO 1996
Interleukin 12 Voest el aV69 1995
Tamoxifen Donovan el al.32 1997
Thalidomide D'Amato el aV58 1994
Linomide Vukanovic and Isaacs2O! 1995
Fumagillin analogues Klauber el aV60 1997
(AGM-1470)

Captopril Volpert el al?02 1996
Platelet factor 4 Strieter el al.203 1995
Antisense VEGF RNA, VEGF Millauer el al.204 1996
blocking antibody and VEGF
receptor kinase inhibitors

Transforming growth factor p1 Pepper el aVO2 1993
Proliferin-related protein Jackson el aV92 1994
2-methoxyoestradiol Fotsis el al.205 1994
Tissue inhibitorof Tagikawa el al.206 1990
metalloproteinase

Retinoids Pienta el al?O7 1993
Tumour necrosis factor IX Frater-Schroder el aV!! 1987
(in vitro)

Group B Streplococcus toxin Thurman el al.20s 1996
CM 101

Pentosan polysulphate Nguyen el al?09 1993
Lavendustin A Hu and Fan2!O 1995
Dexamethasone Hori el al?!! 1996
Medroxyprogesterone acetate Yamamoto el al?!2 1994
Korean misletoe extract Yoon el al?!3 1995
(VlScum album coloratum)

Indomethacin Tarnawski el al?!4 1989
Diclofenac Lala el al.2!5 1997

VEGF, vascular endothelial growth factor

preventing the matrix remodelling required for
angiogenesis1l7, It selectively prevents endothelial cells
responding to angiogenic stimuli resulting in dormancy of
micrometastases122, Systemic administration has been
shown to induce regression of primary tumours of breast,
colon and prostate in a murine model, providing the first
example of dormancy therapy in which tumours undergo
regression through blockade of angiogenesis17,

Antiangiogenic factors (Table 2)

77zrombospondin
Thrombospondin is a glycoprotein secreted by many cells,
including endothelial and epithelial cells, fibroblasts,
smooth muscle cells, monocytes and macrophages1l6. It
modulates endothelial cell adhesiveness, motility and
proteolytic activity by sequestering angiogenesis
inducersll7. While it is a potent inhibitor oi angiogenesis,
it is downregulated during tumorigenesisS,1I8,1I9. In
fibroblasts, wild-type p53 inhibits angiogenesis through
upregulation oi thrombospondin33, an effect which is
abolished by p53 mutations. Paradoxically, thrombo-
spondin enhances the angiogenic effect oi LPS and bFGF
stimuli in inflarnmatory states120. It is speculated that
thrombospondin 1 downregulates VEGF expression
through an as yet unknown mechanism48.

Endostatin

Endostatin is a protein fragment of collagen XVIII and
was first isolated from a murine haemangioendothelioma
celllinel23. It acts in a similar way to angiostatin, blocking
collagenase and impeding matrix remodelling. It
specifically inhibits endothelial cell proliferation. Re-
combinant endostatin inhibits angiogenesis, growth of
metastases and growth of primary tumours123. Endostatin-
treated tumours have a proliferation rate which is the
same as that of untreated tumours, but an apoptotic rate
which is sevenfold greater, providing a further example of
dormancy therapy.

Angiostatin
Angiostatin is a 38-kDa internal fragment of plasmino-
gew21 which inhibits endothelial cell proliferation,
angiogenesis and tumour growth. It blocks the catalytic
site of the enzyme that cleaves plasminogen, thereby

Tumour angiogenesis
Malignant transformation is a cumulative process
requiring loss of control of the cell cycle and a shift in the
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G Micrometastasis

Permissive environment
(increased VEGF

decreased angiostatin, endostatin)

l- ~-

Premalignant Malignant Surgical resection

Fig. 1 Effect of surgery on micrometastases. VEGF, vascular
endothelial growth factor; LPS, lipopolysaccharide

balance of proangiogenic and antiangiogenic factors.
Induction of angiogenesis is a local event which is specific
to activated hyperplastic cells and which procedes overt
tumour formatiow24. For example, angiogenesis is a
marker of premalignant transformation in benign breast
diseasel25,l26. Vascular endothelial cells in malignant breast
tumours express tissue factor, a potent procoagulant,
whereas vascular endothelial cells in benign tumours do
not127. Cell proliferation and malignant transformation
represent a switch to an angiogenic phenotype, but only in
the latter is control of the cell cycle lost. Furthermore,
only those hyperplastic cells which acquire angiogenic
capacity undergo malignant transformatiow24.126. One
model involves a tumour suppressor gene encoding the
angiogenesis inhibitory factor thrombospondin, which is
downregulated when cells undergo malignant trans-
formation, allowing the angiogenic phase to cornmencel18.
This downregulation is under the control of the p53
tumour su¡pressor gene33. Loss of suppressor gene
sequences1 leads to failure of inhibitory pathways with
resultant tumour growthll0.

Numerous parallels between wound healing and tumour
growth exist, suggesting that tumours act as 'obligate
parasites' which have developed the capacity to pre-empt
and subvert the wound healing response of the host as a
means to acquire the stroma they need to grow and
expand129. Normal cells involved in wound healing, such as
endothelial cells and fibroblasts, develop features similar
to those of malignant cells130. These features include
increased proteolysis131, increased motility132 and
proliferation. It is postulated that the invasive,
proliferative behaviour of transformed cells mar result
from a functional failure of signals that usually regulate
the activated behaviour of normal cells in a wound129.

Angiogenesis and tumour metastasis

Tumour cells must detach from a primary tumour to
initiate the 'metastatic cascade'19.133. Angiogenesis is a
necessary precursor of metastasis as new proliferating
capillaries have incomplete basement membranes and are
'leaky', facilitating penetrance by tumour cellsI34.135. These
tumour cells must evade in1mune surveillance in the
circulation and algo at the site of secondary development,
where they cross endothelium, degrade basement
membrane, implant, proliferate and establish their own
capillary networkl9. Angiogenesis is necessary at both the
beginning and the end of the metastatic cascade. There is
resultant metastatic inefficiency as only a small number of
tumour cells which leave the primary tumour successfully
implant at distant sitesI36,137.

Effect of surgery on angiogenesis
Clinical experience and experimental evidence support the
concept that the healing wound is an immunologically
privileged site for metastases25, 106, 138, 139, The cytokine
environment that ensues in the first 24 h fol1owing surgical
trauma influences the healing process for the subsequent
3 weekslOl. Tumour growth is enhanced in healing wounds,
but not in surrounding normal tissues. It has been shown
that when tumour cel1s reach a healing colonic
anastomosis or laparotomy wound within 2 h of its
formation, the probability of a tumour cel1 leading to a
metastatic deposit is increased IOOO-fold compared with
normal tissuel40. Evidence showing an increased hazard
Tale for relapse or death in the 3 years fol1owing surgery

for breast cancel, and a second peak a number of years
later, supports the theory that micrometastases with a
variable late of growth are present at the time of
diagnosisl41. Surgery and subsequent healing mar
contribute to the genesis of recurrent disease through
promotion of a proangiogenic climate which alters the
dynamic equilibrium that would otherwise maintain
micrometastases in a state of dormancy20,142 (Fig. 1).

VEGF mar be one of the prímary links between these
observations, as it is necessary to allow wound healing but
mar also foster growth of micrometastases through its
potent proangiogenic activity. Raised circulating levels of
VEGF have been identified in the early postoperative
period(J. H. Harmey, unpublisijed observation). This mar
facilitate the growth and metastasis of circulating or
intravasated dormant tumour cells.

Endotoxin induces angiogenesis in a dose-dependent
fashion at biologically relevant doses1l2. Significant
translocation of endotoxin into the peritoneal cavity and
systemic circulation occurs following apeo surgery or air-
insufflation laparoscopyl43. It directly increases
macrophage production of VEGF, a potent angiogenic
factor regulating both vessel growth and permeability, an
effect which also appears to e~end to tumour cells1l5,144.
Surgical trauma is known to increase leucocyte numbers
and activity145 and to promote tumour establishment and
growthl46. The authors' preliminary observations indicate
that endotoxin introduced at ,the time of surgery mar
encourage the growth of met~tases by suppression of
host antitumour immune function and stimulation of
proangiogenic factor release. The result is a permissive
environment for tumour growth, and angiogenesis.

It has been shown that the Iprimary tumour produces
circulating inhibitors of angiogenesis, called angiostatin
and endostatin, which act specifically at the level of
endothelial cell proliferationl21. Within 5 days of removal
of the primary tumour, angiostatin and endostatin
disappear from the circulation and angiogenesis within
dormant micrometastases becoroes possible. This heralds
a phase of rapid growth of previously dormant
micrometastasesl8. Dormancy is normally maintained in
tumour cells by means óf a high replication late and a
correspondingly high apoptotic late (Fig. 2). There is no
change in the replication rate of neovascularized~
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oí breast, colon and prostatel7. Recombinant endostatin
inhibits angiogenesis, the growth oí metastases and the
growth oí primary tumoursl23. In vivo inhibition oí
angiogenesis using an animal model oí pancreatic
carcinoma has been shown to reduce tumour growthl65.

Micrometastasis
(apoptosis versus

proliferation)

O

Regression
(apoptosis > proliferation) Mechanisms of action

Antiangiogenic therapies mar act either directly, by
specifically inhibiting endothelial cell proliferation, or
indirectly, by altering the cytokine microenvironment
which controls angiogenesis. Tumours consist of a 'two-
compartment system' in which tumour cells and
endothelial cells co-exist, and produce growth factors
which have paracrine effects on each other33. Inhibition of
endothelial cell growth reduces production of tumour-
promoting substances and inhibits tumour expansion.
Inadequate tumour vascularization mar result in tumour
cell apoptosis, a genetically programmed form of cell
death36. Dormant micrometastases are biologically active
with arate of apoptosis equal to their rate of cell
proliferation122,166. As a result, no net growth of the
metastasis occurs. Antiangiogenic therapies promote and
maintain perpetual dormancy by increasing the apoptotic
rate within the metastasis, hence the appellation
'dormancy therapy'.

~ ~ ~

Surgical
resectionPremalignant Malignant

Fig. 2 Fate oí micrometastases

metastases; however, the apoptotic rate is significantly
decreased with resultant net metastatic growth20,

Direct antiangiogenic agents

Angiostatin and endostatin are the only direct inhibitors
of angiogenesis identified to date, and both have been
shown to reduce tumour growth121,123. Systemic
administration of endostatin, which directly inhibits
endothelial cell mitogenesis, has been suggested as an
ideal 'dormancy therapy'l23. More recently, it has been
reported that repeated cycles of endostatin can prevent
tumour recurrence, possibly through the induction of an
antiangiogenic phenotype, without leading to the
problems of drug resistance which characterize many
chemotherapeutic agents156. Hanahan167 has suggested that
direct inhibitors of angiogenesis mar be subdivided into
three groups. First, pure angiogenesis inhibitors, which
inhibit new vessel growth but have no effect on existing
tumour vessels. Second, tumour vessel toxins, which
damage exIsting tumour vasculature and, finally, dual
action agents, which combine these two effects. It appears
that endostatin is a member of the last group.

Therapeutic opportunities (Fig. 3)
The aim of antiangiogenic treatment is to reduce and
maintain tumours as small relatively dormant clusters of
cells which have low metastatic potential, are more
susceptible to cell-mediated immunological attack3, and
which mar be more vulnerable to chemotherapy147 and
radiotherapy148,149. Tumour growth is associated with
increased interstitial pressure due to leaky tumour
vessels15° in the absence of adequate lymphatic vessels151.
This causes vascular compression and eventual central
necrosis. As a result, tumours do not outgrow their blood
supply, they compress ip52. Antiangiogenic therapy
paradoxically increases delivery of chemotherapy to a
tumour47 by reducing interstitial pressure152. Inhibition of
angiogenesis results predominantly in a cytostatic, not a
cytotoxic, effecf2,153-155, although a recent study suggests
that antiangiogenic therapy mar lead to tumour
regression 156.

Successful antiangiogenic strategies have incorporated a
wide range of antiangiogenic agents121,157-163. Prolonged
courses of interferon cx induce regression of human
haemangiomatous disease164. Systemic administration of
angiostatin induces regression of primary murine tumours

Dormancy
therapy

lndirect antiangiogenic agents

Indirectly acting antiangiogenic therapies influence the
microenvironment which regulates tumour angiogenesis
and so indirectly influence endothelial cell behaviour. The
majoritY of antiangiogenic agents currently identified
belong to this group. Each tumour has a unique complex
microenvironment dictated both by tumour histology and
site of implantation. Additionally, within any tumour,
heterogeneitY arises because of variations in stromal
densitY, tumour differentiation, hypoxia and local
cytokines, among other factors. As a result, each tumour
is exposed to different proangiogenic and antiangiogenic
stimuli which ultimately influence net angiogenesis. It is
therefore unlikely that therapeutic manipulation of a
single cytokine will be sufficient to regulate tumour
angiogenesis adequately. Intertumour variabilitY suggests
that therapeutic regimens based on cytokine manipulation
must be custom-designed for each particular tumour type.

Dormancy Growth
(apoptosis = proliferation) ~ (apoptosis < proliferation)

, ~ G t
Micrometastasis

(apoptosis versus
proliferation)

t <:= Adjuvant

therapy

Regression
(apoptosis > proliferation)

u ~
Prevention Neoadjuvant

of angiogenic switch therapy

Fig. 3 Antiangiogenic interventions

~
Premalignant

Surgical
resection
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tumours. This is also a preangiogenic phase and
development of an antiangiogenic strategy which prevents
the onset of angiogenesis coul4 prevent progression to a
malignant statel76. This would require both identification
of premalignant cells and development of an appropriate
prophylactic antiangiogenic r.e¡?,imen. This is likely to
differ substantially from t~ therapeutic approach
required for primary tumours or micrometastases. For
example, VEGF messenger RNA expression develops late
in the course of tumour progression, is not a feature
of premalignancy28 and its manipulation is, therefore,
unlikely to be of benefit in ibis situation. Timing of
prophylactic therapy will also be critical, as angiogenesjs is
probably not involved in the interim stage of
micrometastasis following shedding from the primary
tumour, when micrometastases are distributed in organs
as either single cells or small cltIsters with ready access to
a blood supply20. None the less, inhibition of angiogenesis
is the most promising new therapy in the treatment of
malignancy. Complete understanding of the factors
regulating angiogenesis and the interactions between
these factors should lead to valuable new interventions.
These may be combined with surgery and other modalities
to improve the treatment of many salid tumours.

Maximum clinical gain may potentially be achieved by a
combination of antiangiogenic interventions which
influence different aspects of angiogenesis. For example,
fue fumagillin analogue AGM-1470 reduces endothelial
cell proliferation157. Interferon IX interferes with
endothelial cell migration168 and IL-12 inhibits
angiogenesis mediated by interferon y169. In contrast,
suramin inhibits bFGF receptor binding in addition to a
number of direct effects on endothelial cells17O, while
tamoxifen inhibits VEGF-mediated endothelial cell
proliferation and migration171. Direct manipulation of
endothelial cell proliferation combined with alteration of
the cytokine microenvironment may prove more effective
than either approach alone.

Multimodality therapy, in which antiangiogenic
strategies are combined with chemotherapeutic agents or
radiotherapy, is known to be more effective than
monotherapy, probably because of the combined effects
on both the tumour and vascular compartments147-149.172.

Optimal methods and timing of administration of
antiangiogenic therapies have yet to be deterrnined.
Unfocused interruption of angiogenesis may potentially
interfere with wound healing, menstruation and
embryogenesis. Inhibitors of endothelial-specific growth
factors (e.g. VEGF) have a theoretical advantage ayer
inhibition of growth factors with more widespread targets
(e.g. bFGF) because undesired non-specific interruption
of mitogenesis is avoided. However, it is likely that novel
methods of site-specific drug delivery, developed to
administer experimental proangiogenic therapies in the
treatment of ischaemic heart disease, will also be applied
to the delivery of antiangiogenic agents and may help to
reduce unwanted systemic effects56. Substantial expression
of VEGF receptors is predominantly limited to the
tumour vasculature. Interference with this system using
monoclonal antibodies, dominant negative receptor or
antisense oligonucleotides against VEGF messenger RNA
offer the potential of tumour-specific inhibition of
angiogenesis and subsequent metastatic growth173. A
similar approach could be pursued for other cytokines.
Developments in the field of gene therapy174 may be
hamessed to produce long-terrn low-grade antiangiogenic
substances which maintain micrometastases in a state of
dorrnancy.

The dosing schedule for biological antiangiogenic
agents is likely to differ significantly from that for
pharrnaceutical agents18. Clinical experience with
interferon IX in the treatment of life-threatening
haemangiomas has shown that very prolonged courses of
daily therapy at optimal doses are essential for vessel
involution175. Timing of antiangiogenic therapy in relation
to other therapeutic interventions also requires
clarification. For example, excision of a primary tumour
results in decreased levels of the inhibitory factors
angiostatin and endostatin18, and raised circulating levels
of VEGF. In the postoperative setting, this is likely to
facilitate the growth and metastasis of circulating or
dormant tumour cells. Therefore, manipulation of tumour
angiogenesis in the perioperative period provides a
tempting therapeutic opportunity. The effect of impaired
angiogenesis on wound healing, however, must be
clarified. A balance between the neovascularization
necessary for wound healing and inhibition of neoplastic
microvessel forrnation must be achieved.

Variability in mechanisms and control of angiogenesis
at different stages in the natural history of cancel may
existo A premalignant phase is recognized for many
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